The Infona portal uses cookies, i.e. strings of text saved by a browser on the user's device. The portal can access those files and use them to remember the user's data, such as their chosen settings (screen view, interface language, etc.), or their login data. By using the Infona portal the user accepts automatic saving and using this information for portal operation purposes. More information on the subject can be found in the Privacy Policy and Terms of Service. By closing this window the user confirms that they have read the information on cookie usage, and they accept the privacy policy and the way cookies are used by the portal. You can change the cookie settings in your browser.
This paper proposes a multi-level meta-classifier for identifying human activities based on accelerometer data. The training data consists of 77 subjects performing a combination of 23 different activities and monitored using a single hip-worn triaxial accelerometer. Time and frequency based features were extracted from two-second windows of raw accelerometer data and a subset of the features, together...
Human activity recognition (HAR) has many important applications in health care. While machine learning-based techniques have been applied for wearable sensor-based HAR, very few researchers have comprehensively studied the effects of various factors on the accuracy and robustness of activity classification. This paper presents a detailed empirical study of machine learning-based HAR schemes. The...
Set the date range to filter the displayed results. You can set a starting date, ending date or both. You can enter the dates manually or choose them from the calendar.